7,108 research outputs found

    Estimates in Beurling--Helson type theorems. Multidimensional case

    Full text link
    We consider the spaces Ap(Tm)A_p(\mathbb T^m) of functions ff on the mm -dimensional torus Tm\mathbb T^m such that the sequence of the Fourier coefficients f^={f^(k), k∈Zm}\hat{f}=\{\hat{f}(k), ~k \in \mathbb Z^m\} belongs to lp(Zm), 1≤p<2l^p(\mathbb Z^m), ~1\leq p<2. The norm on Ap(Tm)A_p(\mathbb T^m) is defined by ∥f∥Ap(Tm)=∥f^∥lp(Zm)\|f\|_{A_p(\mathbb T^m)}=\|\hat{f}\|_{l^p(\mathbb Z^m)}. We study the rate of growth of the norms ∥eiλφ∥Ap(Tm)\|e^{i\lambda\varphi}\|_{A_p(\mathbb T^m)} as ∣λ∣→∞, λ∈R,|\lambda|\rightarrow \infty, ~\lambda\in\mathbb R, for C1C^1 -smooth real functions φ\varphi on Tm\mathbb T^m (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogues for the spaces Ap(Rm)A_p(\mathbb R^m)

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains D⊆RnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    Directed Polymer -- Directed Percolation Transition

    Full text link
    We study the relation between the directed polymer and the directed percolation models, for the case of a disordered energy landscape where the energies are taken from bimodal distribution. We find that at the critical concentration of the directed percolation, the directed polymer undergoes a transition from the directed polymer universality class to the directed percolation universality class. We also find that directed percolation clusters affect the characterisrics of the directed polymer below the critical concentration.Comment: LaTeX 2e; 12 pages, 5 figures; in press, will be published in Europhys. Let

    Classical and relativistic dynamics of supersolids: variational principle

    Full text link
    We present a phenomenological Lagrangian and Poisson brackets for obtaining nondissipative hydrodynamic theory of supersolids. A Lagrangian is constructed on the basis of unification of the principles of non-equilibrium thermodynamics and classical field theory. The Poisson brackets, governing the dynamics of supersolids, are uniquely determined by the invariance requirement of the kinematic part of the found Lagrangian. The generalization of Lagrangian is discussed to include the dynamics of vortices. The obtained equations of motion do not account for any dynamic symmetry associated with Galilean or Lorentz invariance. They can be reduced to the original Andreev-Lifshitz equations if to require Galilean invariance. We also present a relativistic-invariant supersolid hydrodynamics, which might be useful in astrophysical applications.Comment: 22 pages, changed title and content, added reference
    • …
    corecore